
21. How does the form of the cristae fit its function?

Move Surface area for ETCs

INTERACTIVE QUESTION 9.2

Fill in the appropriate terms in the following equation.

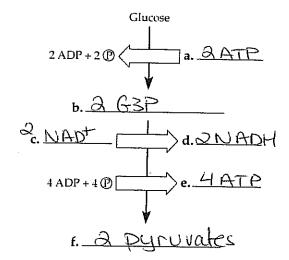
becomes a Oxidized

Xe- + Y - X + Ye
becomes b. Ceduced

Xe- is the reducing agent; it c. <u>ClonateS</u>electrons.
Y is the d. <u>OX argent</u>; it e. <u>CaceptS</u> electrons.

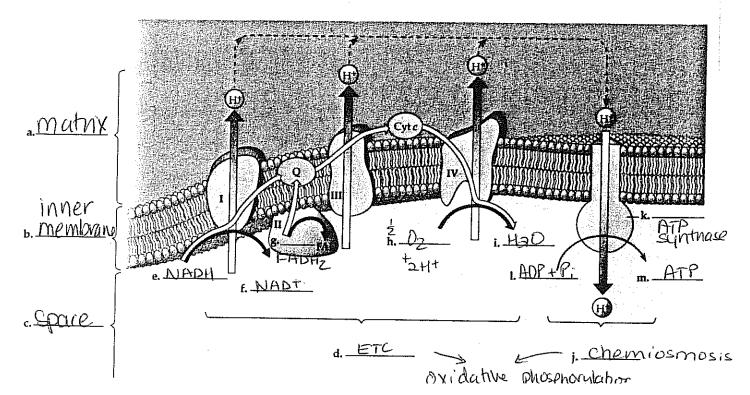
INTERACTIVE QUESTION 9.3

- a. In the conversion of glucose and O_2 to CO_2 and H_2O , which molecule becomes reduced?
- b. Which molecule becomes oxidized?
- c. What happens to the energy that is released in this redox reaction?


transformed into ATP + heat

INTERACTIVE QUESTION 9.4

- a. NAD+ is called an electron corrier (coencym
- b. Its reduced form is <u>NADH</u>.


INTERACTIVE QUESTION 9.6

Fill in the blanks in the following summary diagram of glycolysis.

INTERACTIVE QUESTION 9.8

Label the following diagram of oxidative phosphorylation in a mitochondrial membrane.

Process	Main Function	Inputs	Outputs
Glycolysis	otauts cell respiration	Glucose,	Pyruvate (ATP NAOH)
Pyruvate to acetyl CoA	prepares for Krebs	Pyruvate	Acetyl COA (COZ NAOH)
Citric acid cycle	completes breakdown Be	Acelyl COA	COZ, NADH ATP FADHZ
Oxidative phosphorylation	extracts energy from e	e- from NADH, FAORE	ATP H20
Fermentation	regenerates NADT So glyrolysis an	pyrovate	NAD+, lactate or alcohol + COZ

Test Your Knowledge

MULTIPLE CHOICE: Choose the one best answer.

- When electrons move closer to a more electronegative atom,
 - a. energy is released.
 - b. energy is consumed.
 - c. a proton gradient is established.
 - d. water is produced.
 - e. ATP is synthesized.
- 2. In the reaction $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_6$
 - a. glucose becomes reduced.
 - b. oxygen becomes reduced.
 - c. oxygen becomes oxidized.
 - d. water is a reducing agent.
 - e. oxygen is a reducing agent.
- 4. Which of the following reactions is *incorrectly* paired with its location?
 - a. ATP synthesis—inner membrane of the mitochondrion, mitochondrial matrix, and cytosol
 - b. fermentation—cell cytosol
 - c. glycolysis—cell cytosol
 - d. substrate-level phosphorylation—cytosol and mitochondrial matrix
- e. citric acid cycle—cristae of mitochondrion (MQ(Y)x)
- 7. When pyruvate is converted to acetyl CoA,
 - CO₂ and ATP are released.
 - b. a multienzyme complex removes a carboxyl group, transfers electrons to NAD*, and attaches a coenzyme.
 - c. one turn of the citric acid cycle is completed.
 - d. NAD* is regenerated so that glycolysis can continue to produce ATP by substrate-level phosphorylation.
 - e. phosphofructokinase is activated and glycolysis continues.
- 8. How many molecules of CO₂ are generated for each molecule of acetyl CoA introduced into the citric acid cycle?
 - h. 2
- c. 3
- e. 6
- 1 .

- 9. Which of the following statements correctly describes the role of oxygen in cellular respiration?
 - It is reduced in glycolysis as glucose is oxidized.
 - b. It combines with H⁺ diffusing through ATP synthase to produce H₂O.
 - It provides the activation energy needed for oxidation to occur.
- d. It is the final electron acceptor for the electron transport chain.
 - e. It combines with the carbon removed during the citric acid cycle to form CO₂.
- In the chemiosmotic mechanism,
 - a. ATP production is linked to the proton gradient established by the electron transport chain.
 - **b.** the difference in pH between the intermembrane space and the cytosol drives the formation of ATP.
 - the flow of H⁺ through ATP synthases rotates a rotor and rod, driving the hydrolysis of ADP.
 - d. the energy released by the reduction and subsequent oxidation of electron carriers transfers a phosphate to ADP.
 - e. the production of water in the mitochondrial matrix by the reduction of oxygen leads to a net flow of water out of a mitochondrion.
- **15.** Fermentation produces less ATP than cellular respiration because
 - a. NAD⁺ is regenerated by alcohol or lactate production, without the electrons of NADH passing through the electron transport chain.
 - b. pyruvate still contains most of the "hilltop" electrons that were present in glucose.
 - c. its starting reactant is pyruvate and not glucose.
 - d. a and b are correct.
 - e. a, b, and c are correct.
- 17. Muscle cells in oxygen deprivation gain which of the following from the reduction of pyruvate?
 - a. ATP
 - b. ATP and NAD+
 - c. CO₂ and NAD+
 - d. ATP, alcohol, and NAD⁺
 - e. ATP and CO₂